Теория систем автоматического регулирования

       

Глоссарий терминов


Графов теория

Учение об общих топологических свойствах графов и о вытекающих из них расчетных методах. Две ветви теории: тероия направленных графов

и тероия ненаправленных графов четко делят между собой программы визуального математического моделирования.

Граф направленный, сигнальный

Диаграмма прохождения сигнала, состоящая из совокупности узлов (сумматоров) и соединяющих их ветвей. Стрелки на ветвях указывают направление передачи сигнала или воздействия от одного узла к другому. Ветви в направленном графе характеризуются передаточными функциями. Направленный граф является графической формой записи системы уравнений описывающих динамическую систему, и не может отражать ее топологию (модульную структуру).

Узел направленного графа

Сумматор координат модели динамической системы с одним выходом (поэтому узел направленного графа называют координатой). Обычно в каждом энергетическом домене в качестве координат выступают парные физические величины, чье произведение есть мощность. В пакетах математического моделирования эти парные физические величины называются координатами первого и второго рода. Выходные координаты ветвей собираются в узлы направленного графа согласно первому и второму законам Кирхгофа1. Узлы направленного графа, ровно, как и сам граф, не отражают различий в физической природе координат первого и второго рода (это непреодолимый недостаток направленных графов).

Ветвь направленного графа

Графический образ закона преобразования сигнала, который называется передаточной функцией. Если направленный граф есть истинная модель динамической системы и узлы графа отражают все ее координаты (граф не приведен), то передаточные функции ветвей есть либо закон Ома2, сформулированный для соответствующего энергетического домена и связывающий его физические величины первого и второго рода, либо другие физические законы, связывающие физические величины первого и второго рода разных энергетических доменов.

Граф ненаправленный, топологический (схема замещения)


Схема, состоящая из совокупности соединенных в узловых точках двухполюсных модулей преобразующих энергию. Полюсы двухполюсников являются подводами энергии. Для ветвей ненаправленного графа нельзя однозначно указать направление распространения координаты первого рода. Ненаправленный граф зеркально (без искажений) отражает модульную структуру (схему замещения) динамической системы

(энергетической цепи), и в том же графическом образе, но как в нелинейном зеркале, отражается ее система уравнений. Для узлов ненаправленного графа формулируются постулат о сохранении материи, а для контуров – постулат о сохранении энергетических потенциалов.

Узел ненаправленного графа

Условное графическое обозначение места соединения трех ветвей, в котором происходит либо распределение, либо аккумуляция координаты первого рода (потока материи). В любом ненаправленном графе узлов-распределителей и узлов-аккумуляторов материи равное количество. Различие математических моделей этих узлов, в силу единообразия физических конструкций, ни как не отражается в графическом представлении (т.е. в ненаправленном графе). Любая ветвь ненаправленного графа энергетической цепи соединяется с узлами разного типа. Модели узлов, в которых сходится большее количество ветвей, получаются каскадированием трехвыводных узлов. В динамике, поток (физическая величина первого рода) любой ветви входящей в узел может менять свое направление; в узлах графа происходит лишь смена знака потока.

Ветвь ненаправленного графа

Участок энергетической цепи в ненаправленном графе с одним и тем же потоком материи (координатой первого рода), который может состоять из произвольного количества последовательно включенных моделей физических элементов.

Контур

Для направленных и ненаправленных графов, это замкнутый путь, проходящий через несколько узлов и ветвей.

Координата первого рода (through variable3)

Отражение в модели той из парных физических величин (чье произведение есть мощность), которая фиксируется датчиком, установленным в разрыв любого подвода энергии к модулю динамической системы.Во всех энергетических доменах физические величины первого рода подчиняются первому закону Кирхгофа.

Координата второго рода (across variable3)

Отражение в модели той из парных физических величин (чье произведение есть мощность), которая фиксируется датчиком, подключенным между любыми двумя подводами энергии к модулю динамической системы. Во всех энергетических доменах физические величины второго рода подчиняются второму закону Кирхгофа.


Содержание раздела